sábado, 21 de mayo de 2011

Otras formas de complejos


(1 + 3/2 i) + (2 + i) = 5 + 5/2 i




se define el módulo de un número complejo como el módulo del vector que lo representa, es decir, si , entonces el módulo de  es .
El conjugado de un número complejo se define como su simétrico respecto del eje real, es decir, si , entonces el conjugado de  es .
El opuesto de un número complejo es su simétrico respecto del origen.

Forma polar o módulo-argumento
Otra forma de expresar un número complejo es la forma polar o forma módulo-argumento,
donde es el módulo de , y donde q es un argumento de , esto es, q es un ángulo tal que
.

Dos números complejos , representados en forma polar son iguales si y sólo si sus módulos son iguales , y sus argumentos se diferencian en un número entero de vueltas, es decir, , con .
La forma polar de un número complejo es especialmente cómoda a la hora de multiplicar, ya que basta con multiplicar los módulos y sumar los argumentos, es decir, si , y , entonces

Del mismo modo se puede calcular el cociente de un complejo por otro no nulo sin más que dividir los módulos y restar los argumentos:
,
siempre que .

Una variante de la forma polar se obtiene al tener en cuenta la conocida como fórmula de Euler:
para .
Esto nos permite escribir un número complejo en la forma siguiente, denominada forma exponencial:
Esta nueva forma es especialmente cómoda para expresar productos y cocientes ya que sólo hay que tener en cuenta las propiedades de la función exponencial (para multiplicar se suman exponentes y para dividir se restan). En particular, para potencias con exponentes enteros se tiene .
Esto nos permite dar una nueva expresión para el inverso de un complejo no nulo en la forma .

Estudiemos ahora las potencias con exponente racional de un número complejo. Dado , sea , para un número natural p.
Si , puesto que , es decir, . Por tanto, , y además, , o sea, , para .
De todos estos valores sólo p consecutivos son distintos, el resto resulta ser repetición sucesiva de valores ya obtenidos. Por tanto, un número complejo tiene siempre p raíces p-ésimas distintas
, para .
Se puede observar que las p raíces pésimas tienen todas el mismo módulo, y sus argumentos se diferencian en  cada uno del siguiente, esto es, las raíces p-ésimas se encuentran en los vértices de un polígono regular de p lados incrito en la circunferencia de centro 0 y radio .
Como ejemplo, en la siguiente gráfica podemos ver las raíces quintas de  

raices.gif (8036 bytes)







No hay comentarios:

Publicar un comentario